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Abstract—A previous analysis of homogeneous turbulence for times before the final period has been
extended to the case of temperature fluctuations in a homogeneous turbulence. The method consists
essentially of the solution of the 2- and 3-point Fourier-transformed temperature equations after
neglecting the fourth-order correlations in comparison with the second- and third-order correlations.
Results are obtained for the convective transfer function, the spectral “energy” function and the total
temperature fluctuation “‘energy”. Comparison is made between the analysis and published experi-
mental data obtained using air. The decay law obtained may be written T% = A(r — 1)%/2 + B(t —1¢)™®
where T2 is the total “energy’’ (the mean square of the temperature fluctuations), # is the time and 4 and
t, are constants determined by the initial conditions. The constant B depends on both initial conditions
and the fluid Prandtl number. For large times the last term becomes negligible, leaving the —3/2 power
decay law for the final period previously found by Corrsin.

It is shown that the effect of increasing Prandtl number is to extend the spectral “‘energy” function

to larger wave numbers and to reduce the rate of decay of the temperature fluctuations.

Résumé—Une étude précédente de la turbulence homogeéne, a des instants précédant la période finale, a
été étendue au cas des fluctuations de température en turbulence homogeéne. La méthode consiste
essentiellement a résoudre les équations aux transformées de Fourier des températures en deux et
trois points, aprés avoir négligé les corrélations du 4° ordre vis & vis des corrélations du 2° et 3° ordre.
Des résultats sont obtenus pour les fonctions de la transmission de chaleur, du spectre d*“‘énergie” et
I*énergie” de fluctuation de la température totale. Une comparaison est effectuée entre la présente
étude et les résultats expérimentaux publiés pour I'air. La loi de dégradation obtenue peut s'écrire
T? — A(t — £,)*2 + B(t — 1,)~® ot T* est I“énergie” totale (moyenne quadratique des fluctuations
de température), ¢ le temps A4 et ¢, sont des constantes déterminées par les conditions initiales. La
constante B dépend 2 la fois des conditions initialeset du nombre de Prandtl. Pour de grandes périodes,
le dernier terme devient négligeable, seule subsiste la loi de dégradation en puissance — 3/2 pour la
période finale précédemment trouvée par Corrsin.

On montre que l'effet de I'augmentation du nombre de Prandtl est d’étendre la fonction du spectre
d“énergie” a des nombres d’ondes plus grands et de réduire la vitesse de dégradation des fluctuations

de température.

Zusammenfassung—Eine frithere Untersuchung der homogenen Turbulenz fiir Zeiten vor der End-
periode wurde auf den Fall von Temperaturschwankungen in homogener Turbulenz ausgedehnt. Die
Methode besteht im wesentlichen in der Losung der Fourier-transformierten Temperaturgleichungen
fiir zwei und drei Punkte, unter Vernachldssigung der Korrelationen vierter Ordnung gegen die der
zweiten und dritten Ordnung. Man erhilt Ergebnisse fiir die konvektive Ubergangsfunktion, die
spektrale “Energie”-Funktion und die totale “Energie”” der Temperaturschwankungen. Mit Literatur-
werten fiir Luft wird ein Vergleich durchgefiihrt. Das Abklinggesetz kann in der Form

TR = A(t — 1)~%2 4 Bt — tp)~®
geschrieben werden. Hierin bedeuten T2 die totale “Energie” (das mittlere Quadrat der Temperatur-

* Presented at the American Physical Society Meeting of the Division of Fluid Dynémics, 23-25 November, 1959,
University of Michigan, Ann Arbor, Michigan.
+ Present address: Grumman Aircraft Engineering Corporation, Bethpage, N.Y.

312



DECAY OF TEMPERATURE FLUCTUATIONS IN HOMOGENEOUS TURBULENCE 313

schwankungen), ¢ die Zeit, A und ¢, Konstanten, die aus den Anfangsbedingungen zu bestimmen sind.
Die Konstante B hiingt sowohl von den Anfangsbedingungen wie von der Prandtlzahl ab. Da fiir grosse
Zeiten der zweite Term zu vernachlissigen ist, bleibt fiir die Endperiode das Abklinggesetz mit der
Potenz-3/2, wie es frither von Corrsin gefunden wurde.

Es zeigt sich ferner, dass bei wachsender Prandtlzahl die spektrale “Energie”-Funktion zu gros-
seren Wellenzahlen ausgedehnt und das Abklingen der Temperaturschwankungen vermindert wird.

Annoranmna—Cymectsywomuil adanns TypOyaeHTHOCTH OHUI pAcIpoCTpaHeH Ha caydaii
TeMIIePaTYPHBIX KoJeGaHmii B Cpefe € OJHOPOXHOH TYypOyJeHTHOCTHIO. Meroj cocrout B
pewennu pupPepeHINANbHEX yPaBHEeHU! HePeHoca TelIa ¢ HOMOLYbI0 IBYX-U TPEXMEpHEIX
npeofpasopanuit Oypbe Ge3 yuéra COOTHOIIEHWS IIPe06PABOBAHUII YETBEPTOTO, BTOPOrO W
TpeTbero HOPAAKOB. [losydeHE pesysabTaTHl AIA (YHKIMA KOHBEKTMBHOTO MEPEHOCA U
CIEKTPAJIbHON «dHEPTUM», a Takike obuiell «Hepruu» TeMmepaTypHHX koxeGaumii. CpapHu-
BAeTCA aHAMM3 U onyOIMKOBaHHEIE 9KCIIEPAMEHTAIBHEE TaHHbIe, TI0JIyYeHHble AJA BOBIyXa.
3aKoH peJaKcalui MojkeT OBITh 3aIMCAH KAK

T2=A (1—t,) =¥+ B (t—t,)~5

rae 7% — o0ulast «Heprusy» (CpefHee KBaIpaTUYHOE TEMIEPATYPHBIX KoJleOaHuit), f — BpeMs,
A n t, — NOCTOSIRHEIE, ONpeflesiAeMble HaYalbHEIMU ycaoBuamu. lloctoannas B sasment
OT HaYaJAbHRIX yCI0Buit W OT KpuTepus Ilpawmpraa mas sxuproctn {rasa). s Goasmumx
OPOMEHYTHOB BPEMEHU MOCJEHION BEJIMUMHY HEe YUHTHIBAEM, OCTABIAA SAKOH PeIaKcalun
B BHJIE OJIHOWICHA CO CTETeHbI0 — 3/2 1A KOHeYHOTO MEePHOJA, OTKPHTOro panee Hoppenupim.

llorasano, 4ro yBeJuuyeHue KpuTepnsa IIpaHATIA HPUBOAMT K PACHPOCTPAHEHHIO
COEeKTPaIbHOM (yHRUMM «dHEPrmu» Ha GOIbUINE BOJHOBHE KPUTEPHH M K YMeHLIICHHIO

CKOPOCTH 3aTyXaHUA TeMIEPATYpPHBIX Kojebanuii.

INTRODUCTION

A THOROUGH study of the decay of temperature
fluctuations in homogeneous turbulence would
appear to be one of the initial steps required for
understanding the important process of heat
transfer in shear turbulence. As pointed out in
[1], such a study would also be applicable to
concentration fluctuations during the mixing of
equi-dense fluids, for the cases of constant
mutual diffusion coefficient and no interfacial
tension.

Corrsin [1, 2] has already made an analytical
attack on the problem of turbulent temperature
fluctuations using the approaches employed in
the statistical theory of turbulence. His results
pertain to the final period of decay, and, for the
case of appreciable convective effects, to the
“energy” spectral form in specific wave~-number
ranges. Further work along this same line has
more recently been done Ogura [7].

In 1958 Deissler [3] presented a theory of
homogeneous turbulence which was valid for
times before the final period. Essentially, the
theory presented in [3] is valid during the period
for which the fourth- and higher-order velocity
correlation terms are negligible compared to the
second- and third-order correlation terms. In
[4] the analysis was extended to still earlier
times by neglecting only the fifth- and higher-

order correlation terms compared to lower-order
correlation terms.

In solving the problem of the decay of tem-
perature fluctuations in homogeneous turbulence
before the final period it seems logical to use
the approach which has already been employed
with success for studying turbulence. In this
paper, therefore, the method of [3] is used to
study decay of temperature fluctuations in
homogeneous turbulence. The results of the
analysis are compared to the experimental data
of [6].

NOTATION

C(x), function of « defined by equation
(38);

C,, heat capacity at constant pressure;

F(x), function defined by equation (40);

G, spectral “‘energy’ function;

H®, dimensionless quantity defined by
equation (52);

K, spectral transfer function;

k, thermal conductivity;

M, mesh size;

Ny, constant depending on initial con-
ditions;

Pr, Prandtl number;

IR static pressure;



R, dimensionless function of Pr, given
by equation (44).
Rey, Reynolds number, MU/v;

r. displacement vector from P to P’;
displacement vector from P to P"';
dimensionless quantity defined by
equation (53);

temperature fluctuation from time
average;

time average value of temperature;
instantaneous value of tempera-
ture;

time ;

time average velocity of fluid in
direction perpendicular to grid;
u, velocity fluctuation from time
average;

time average value of velocity;
instantaneous value of velocity;
distance in flow direction from
heated grid;

X, position vector;

N

S NN

AR =

Greek symbols

Vs thermal diffusivity;

S constant depending on initial con-
ditions;

Z. angle between » and «’;

7 variable defined by equation (41);

», o, wave-number vectors (magnitude

in dimensions of 1/length);
thermal microscale;
v, kinematic viscosity;
. fluid density;
7., B, a, 8, symbols used in quantities obtained
by Fourier transforms.

Subscripts
i, j, k, I, symbol used to indicate direction;
0, indicates initial conditions;

min, minimum value;

norm, normalized quantity.
Superscripts

’ indicates quantities at point P’;

", indicates quantities at point P"’;

8, indicates dimensionless quantities.
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THEORY

A. Correlation and spectral equations

For an incompressible fluid with constant
pr pertles and for neghglble frictional heating,
+1-.
(298

rmatddoman

may be written
T oT

Co |l =+ .~ =
P 2 [ f + uz axz]

where T and #; are instantaneous values of
temperature and velocity. Breaking these instan-
taneous values into time average and fluctuating

T
Ox,0x;

(1)

components as T = T + T and &, = &, - u,
allows equation (1) to be written
ol 8T + of _ &T ol T
—6—[ u1 76*7 -+ U; E-;L U; —0}-1 - U, 7(;, =
aT 2T
e e 2
7 [@x@@xi + bxic?x?} (2)

where y =k/pC,. From the condition of
homogeneity it follows that 7/0x; = 0, and in
addition the usual assumption is made that 7T is
independent of time and that # = 0. Thus
equation (2) simplifies to

v &T
—\Pr) ox,éx;
where Pr = v/y.

Equation (3) is assumed to hold at the arbi-
trary point P. For point P’ the corresponding
equation can be written

er’ er v
o T e

Multiplying equation (3) by 7", equation (4) by
7, time averaging and adding the two equations
gives

or
- o U;
pr + U

oT
ox;

{3

T’

wew @

oTT’ 8(TT’)+ LoIT)

ot Y x; “s ox;
v [3TTYy TT) )
Pr | ox;0x; ' oxiox,

The continuity equation is

aui
axi

ou;
:5;2_0

(6
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Substitution of equation (6) into (5) yields

adT)  owIT) &Il

ot ox; ox; N
v [82('773 aﬁ(‘f‘r)} o
Pr| xox; 0x;0x;

By use of a new independent variable,
re =X, — Xg
1t is possible to rewrite equation (7) in the form
oTT) owIT) | ouIT) 2ve¥IT)
ot or; or,  Pr orer,

@®)

It is convenient to write this equation in
spectral form by use of the following three-
dimensional Fourier transforms

ee]

rr(x)exp (ix-r)dx  (9)

TT'(r) = j
uIT (r) = jf G777 (%) exp (ix - 1) dx (10)

and, since it is obvious by interchanging P and

P’ that w,TT'(r) = u,TT'(—71),

oo

——

w,TT(r) = J drr'(—wyexp (ix - r) du (11)
Substitution of equations (9)-(11) into equation
(8) leads to the spectral equation

Grr(®) | [— —
o + Ky [?51‘77 (—») — ¢;7r (“)} =

y g
— 5 kT () (12)
Equation (12) is analogous to the two-point
spectral equation governing the decay of velocity
fluctuations (as pointed out in [1]) and therefore
the quantity 77'(x) may be interpreted as a
temperature fluctuation “‘energy” contribution
of thermal eddies of size 1/«. Equation (12)
expresses the time derivative of this *“energy” as
a function of the convective transfer to other
wave numbers and the ““dissipation” due to
the action of thermal conductivity. The second
term on the left-hand side of equation (12) is
the so-called transfer term while the term on the

right-hand side is the “dissipation” term.

In order to obtain an additional relation
involving the unknown quantities the same
general procedure is followed as in [3] and a
three-point equation is derived. For this purpose
the three points P, P’ and P together with the
indicated position vectors r and r’ are considered.

For the two points P’ and P"’ arelation analogous
to equation (7) can be found as

(aTITII) 9(u;T'T”) + a(u;lT/T/I) _
ot Oxy oxy
v [XT'T")y T'T")) (13)
Pr oxiox, ' oxyox) |

If equation (13) is multiplied through by u;, the
Jjth velocity fluctuation component at point P,
the resulting equation can be written in the form

o, T'T™") n HuaT'T"y S T'T)
ot ox; axy
v (N, T'T"y u,T'T"
Pr | oxjox; ox;/ ox;;
The momentum equation at point P is
ou;  uuy) 1 op Sy
B N R ()
ot 3x¢ p axs- 5xi3xi
If equation (15) is solved for du;/ot and substi-

tuted into equation (14), the result on taking
time averages is

! 1t auj
}+ T'T" 5 (14)

+

~

ou;T'T™) n uu T'T") L Huu; T"T")
ot ax; oxy
v {82(u,-T’T”) o, T'T ”)}
Pr| ox;ox] oxoxy [
’ 1II x" x" X1 } (16)
. o(usu,T'T") . !_3(pT’T”)
Hu,T'T")
cY Ix;0x; b
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Making use of the relations r; = x; — x; and
r, = x} — x; allows equation (16) to be
rewritten as

ou,T'T" AT T
fuwT'T’) »J(1+P) (’ ) ¢

ct 30}"2
LT T BT T } !
oror], arer, |
A TTT) S T7T) . (17)

ar; or;
+ 8(uj'uiT,T”) a(u]’u,‘T T”)

or) or;

+ 2Pr + (14 Pr) -

18(pT'T"y  1pT'T")
T - e i
or; por; ]

Six-dimensional Fourier transforms for quanti-
ties in this equation may be defined as

u;T'T” ==
(0

Bj(i ¢ exp [i(x -1+ ' - 1)) duds’ (18)
P

oo

BROT expli(x-r+x'-r)] dedi’ (19)

P o

af’0” exp [i(» - r + »" - )] dw dx’ (20)

J—ad -

Interchanging P’ and P”' shows that
uyT"T" = wu’T'T"".

By use of this fact and equations (18)-(20),
equation (17) may be transformed to

d 8!/
BT,

2 {(1 + Pr)e® -+ 2Pr i, +
+ BT +
(21

4 (1 + POE BT = — i(x;

W 1 . N
o+ (6, + }BBFT + il + 1)alD
If the derivative with respect to x, is taken of
the momentum equation for point P, the equa-
tion multiplied through by 7’7" and time
averages taken, the resulting equation is
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HMuu, T'T") 1 &pT'T") 22)
o, p exgx

or, in terms of the displacement vectors r and r’
this becomes

& R
orifr, " e, el T =

aror, or oy,

: & 2 62 & T'T"y(23
._»,;‘ G_I‘;~072+ ﬁi@rlTﬁro](p )(23)

Taking the Fourier transform of equation (23)

and solving the transformed equation for «8'6"”
yields

bl =

r 14 i
P[KZK;C ks
[Kjrey + 2wy + ]

Equation (24) can be used to eliminate a#'8"
from equation (21).

26y, repy]

B0 (24)

B. Solution for times before the final period

To obtain the equation for final period decay
the third-order fluctuation terms are neglected
compared to the second-order terms. Analo-
gously, it would be anticipated that for times
before but sufficiently near to the final period
the fourth-order fluctuation terms should be
negligible in comparison with the third-order
terms. If this assumption is made then equation
(24) shows that the term a8, associated with
the pressure fluctuations, should also be neg-
lected. Thus equation (21) simplifies to

b7 .

1/
LA T + 2 Kk
i Pr {(1 4+ Pr)e® + 2Pr «x;
+ (1 + PR B867 =0 (25)

Inner multiplication of equation (25) by «; and
integration between 7, and ¢ gives

1;B,0°8" = [1,;8,6'0" ] exp {—w I;r [(1 4 Pr) «* +

-+ 2Prxi’ cos { + (1 + Pr)x'?] (¢ — to)} (26)

Letting ¥ == 0 in equation (18) and comparing
the result with equation (10) shows that

BT o @7

drro = |
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Substitution of equations (26) and (27) into
equation (12) results in

PZJ— A —
— g —_ 2 4 =
57 () + BT (»)

exp {—

+ 2Pri’ cos L+ (1 + Pr)w]} de' (28)

r | BTT — BTl

V(t — to)
Pr

[0+ P+

Now dx'(= dk,dk,dx;) can be expressed in
terms of «" and { as

dn’ = —2m’2 d(cos {)dx’

(29)

the resulting equation is

G 2wkt
Tt o=k 33)
where
_ 80 * 3.5 5.3 )
‘*2V(z-—zo)jo (K — w2
V(r — to) B
EXPI— 5, (1 + Pryx?—2Prxx’ +
+ (1 + Pr)x’z]} +(332)
— €X {:l}'('%;— 10) [(1 +Pl‘)h‘2+ 2Prrx’ +

+ (14 Pr)K'z]}] dzc"}

or, on carrying out the integration,

= A/(mm) 8o(PrY32 exp [—u(t — 1) (1 +

2Pr)2/Pr(1 + Pr)]

L]

Prd Pr .
+ [(1 I (e Pr)] « } (34)

K

3
5} vt — t4)

K= 252 (1 — 132 (1 + Prys2
15Pr «* 5Pre
G2 — 12 (1 + Pry " |0+ Pr

Substitution of equation (29) in equation (28)

yields o — 2w
' () + Pr

2riv; (BT — B =B ()],
[

[ (o

ki (%) =

Br {(1 4 Pr)x? 4 2Prex’

cos{+(1+ Pr)x’z]} d (cos C)} d«’ (30)

In order to perform the indicated integrations in
equations (30) the initial condition,

in; (B0 — B (—)8" (—x)],,
must be specified. A function which would

appear to satisfy all the necessary conditions, as
will be seen later, is

i; [BET — BT 0 (— )], =

)

— 00 28 e
) (xc®x k%2 (31)
where 8, is a constant depending on the initial
conditions. Substitution of equation (31) into
(30), carrying out the two integrations and

defining G(k) = 2mir7 (%) (32)

X

(It may be of interest to note that the spectral
energy function defined in [1] is larger than that
defined in equation (32) by a factor of 4.) Since
for low « values, as shown in [1], a Taylor’s
series expansion for G begins with the product
of a time independent constant and «2, equation
(33) indicates that K must begin as «% for small «.
This condition of K is fulfilled by equation (34).
It can be shown, using equation (34) that

rKdK —0

0

(33)

This was to be expected physically since X is a
measure of the transfer of “energy” and the
total “energy” transferred to all wave numbers
must be zero. The necessity for equation (35) to
hold can be shown rigorously as follows: if
equation (10) is written for both »x and —x, and
the resulting equations differentiated with respect
to r; and added, the result is, for

7} e
r=0(a—,_§=-5—,;;)

:m [Fer7 (%) — Frrr(—n)|dx

R
~25;iuiTT=j
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Since according to equations (32), (33) and (12)
K = 2mikie; [ir7" (—n) — dpor7’ (n)]

the previous equation can be written

E ©» K
—2 Ex‘z LllTT == J_w %/szu
Inasmuch as dx = 4n«?dx for K = K(x, t), the
last equation becomes

o 0 ——
j Kde = ——uTT=0

0 ox;
by homogeneity, Q.E.D.
Since equation (33) is a linear differential
equation it can be solved for G as

2 2, t— 2(f
G =exp [~— e E"r tO)] JKexp [LK gr tO)] dt -+

— 2uk? (t — tg)

+ C(x) exp [ Br

| o
where C(x) is an arbitrary function of «. For
large times, Corrsin [1] has shown the correct
form of the expression for G to be

G = ]%[T—O x® exp [:ZVKZ (=)

Pr

] (37

where N, is a constant, analogous to the
Loitsianskii invariant, which depends on the
initial conditions. Using equation (37) to evalu-
ate C(x) in equation (36) yields
N 2
Clr) = 2 (38)
Substitution of the values of K and C(x) as
given by equations (34) and (38) into equation
(36) gives the equation

and R. G. DEISSLER

where

Fl) = exp (—?) j exp(S)dS  (40)
0

. vt — ty)
v~ Jms )

The function F() has been calculated numeri-
cally and tabulated in [5]. If in equation (9) r is
set equal to zero and use is made of the definition
of G as given by equation (32), the result is

(41

T e
5= JO G(x)dx
Substituting equation (39) into (42) gives
_ﬁ ; No(Pry*2 SR 3
2 TR A — g )
where R is a function of Prandtl number,
. w(Pr)é
=20 P (14 2P

9 5Pr(7Pr — 6)

16 7 1601+ 2p7)
35Pr(3Pr — 2Pr + 3)
IO ) 2o S %))

|
|, 1'5422Pr(3Pr* — 2Pr 4 3)(1 + 2Pr)>*

Vi (1 Py

(I11y ... [+ 2(n — 1))

(42)

~

o0

2

n=1

2n + Dt Rp (1 ?’PT)*?] }

The second term on the right-hand side of
equation (43) becomes negligible at large times
leaving the final period decay law previously
found by Corrsin [1].

2B (t—t
G(K, t) — %) K2 exp {_M] +

Pr

[— ve(t — to)(1 + 2Pry/Pr (1 + Pr)]

4 V() 8o(Pr)*® exp

3Pr «t Pr(7Pr — 6)x®

21372 (1 + Pr)7/2

L (39
4(3Pr2 — 2Pr + 3 39

{21,2(, 1 +

31 F Pr)(r — 19°2 31+ PriE(t — t)'

3(1 + Pr)% +/(Pr)

84/(v) 3Pr? — 2Pr + 3)«® F('q)}
]
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If use is made of the relation ¢ = %/U where X is the distance from the heated grid and U the
mean fluid velocity, equation (43) can be put in the alternative form

T No(Pry*2 (U/M)*? 3(U/M)* R
2 T 8V (RIM — X MY ' ARIM — Tg MY

“3)

where M is the grid mesh size.
It is convenient to have the equations in dimensionless form. For this purpose the following
dimensionless quantities are defined:

8,47 K N — 1)) Wt — 1)G
R e e
— 5.3/1 T2
& 0
" = yoom (46)

By making use of relations (46), equations (34), (39) and (43) can be written in dimensionless
form as

_ —V/(@)(Pry" exp [—«®2 (1 + 2Pr)/Pr(l + Pr)]

. 21§ Pry 1
x4 2
{4(115*3' T [(1 —S&P;’r)z B ?1%?] < [(1 fpr)f* T im} Kes} “n
and
Go — «®2 exp (—2«%*/Pr) N V(mPri2 exp [—«®2 (1 4 2Pr)/Pr(1 + Pr)] ]
1r 21 + Pr)z (o7
{3’?34 + L[D]«@“ 4GP — 2Pr + 3 | 8(3Pr* — 2Pr + 3@’  (48)
2 3{1+Pr 3Pr(1 + Pr)? 3PrE (1 + Pr)pe
«®2
and

T2® Prie R
2

=8y o2 T eE “9)

Another quantity of interest is the thermal microscale Ar, which, for the isotropic case, can
be defined by the equation

d7¢  —12T?
T (30)
Combination of equations (45) and (50) yields
3(— X/ M)32 24R(Pr)82 (—Xo/ M)
Ar\?  +/(2m) ReyPr{(%/M) — (Xo/ M)*?] " (Pr)** Ren [(X/ M) — (Xo/ M)}® (51
174 3(— %o /M) TORSE (— X/ M)

8v(2m) [(X/M) — (Xo/M)]*2 = Pri’ [(X/M) — (Xo/M)]*
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where Reps is defined as MU/v. For large times
of decay the second terms in both numerator
and denominator become negligibly small and
the final period expression for {Az/M)? previously
derived by Corrsin 2] is obtained.

DISCUSSION AND RESULTS

The experimental data of [6] were obtained
behind a heated grid in a wind tunnel using air
as fluid. Both temperature and velocity fluctua-
tions were measured with hot wire anemometers.
Fig. 1 shows the temperature fluctuation data
plotted as [1/7%]*® against /M. The solid line
represents the theory as given by equation (45),
with the constants £,/M, N,, and &, evaluated as
shown. The dotted straight line is the final
period curve, as indicated by the first term on the
right-hand side of equation (45). The data
scatter considerably—it would appear that with
present measuring techniques there is less
precision in temperature fluctuation measure-
ments than in velocity fluctuation measurements.
One of the main reasons for this is that the tem-
perature fluctuations must be kept small to
avoid fluid property variations. Comparison of
the solid curve with the data indicates that the
theory is valid for all %/ M greater than about 25.
None of the data is in the final period.

18—

1 1 ) )
60 70 80 90

1
50
X/M
FiG. 1. Theoretical decay of temperature fluctuations
compared with experimental data for Pr = 0-72.
Theory, equation (45).

Xo/M = — 82:6; Ny = 506 x 1077,
8 = 534 x 10-%,

- — Theoretical final period.

O Data of [6].

and R. G. DEISSLER

The effect of the convective terms can be seen
in Fig. 2, where the transfer function K® is
plotted against «® for various dimensionless
times 1® for a Prandtl number of 0-72. Since K®
is proportional to the net transfer of thermal
“energy”’ into an eddy size, Fig. 2 shows that
there is an overall transfer of “‘energy” from large
eddies to small eddies. The integrated transfer
term [ K®dx®, must, however, be zero. The
curves indicate that, as expected, the transfer
term dies out with increasing time. The results
are quite analogous to those found by Deissler
[3] for the velocity transfer function.
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L H ! 1 L
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Fic. 2. Dimensionless transfer function X% as a
function of wave number and time for Pr = 0-72.

If a quantity H is defined as the integrand in
equation (33a) multiplied by the coefficient
before the integral, then a dimensionless
quantity H® can be defined by the equation

(R

((1 + Pr) — 2Pr; +

He — B — 1) 1@

5 3

w5
(1 + PR (;)2)] — exp [~ fg((l 4P+

+ 2Pr :— 4+ (1 + Pr) (%)2)]} (52)

He is proportional to the amount of thermal
“energy” transferred to a wave number « from
the wave number «'. In Fig. 3 H® is plotted
against «'/« for three different values of «® and
for Pr = 0-72. The three values of «® chosen
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were such that K® was a minimum, zero and a
maximum. As an example of the physical signifi-
cance of the curves, the curve for «® = 0-814
represents a minimum for K@, so that there is an
overall loss by convective transfer. The curve
demonstrates this overall loss, since it can be
seen that more energy is lost by wave number «
to wave numbers greater than « than is gained
from wave numbers less than «.

ols—

012

-.012]

-.016]

-020 | J 1 | | ]
o 05 [Ke] 1.5

F1G. 3. Variation of dimensionless transfer quantity
H® with «’/« for three values of «® and Pr = 0-72.

Fig. 4 is somewhat similar to Fig. 3 except that
the effect of x on the curves has been averaged
out by performing an integral of H® from
0 to oo, obtaining S®, or

[+ o)
58 = |t b (5
0
S may be interpreted as being proportional to
H® for an average value of «x. Thus, on the
average, there is a maximum transfer of “‘energy”
to « from a wave number «’ equal to about 0-65«,
while the maximum loss from « is to a wave
number «’ equal to about 1-4«.

The quantities H® and S® are analogous to
quantities defined by Deissler [3] in connexion
with the velocity inertial transfer, and the trends
found here are quite similar to those.

Ol6—

o2

s®

-004—

-008—

| I | | | |
-0125 ] 2 3 3 B 6

Variation of averaged transfer quantity S®
with «"/« for Pr = 0-72.

FiG. 4.

In Figs. 5(a), (b) and (c) the transfer function
is plotted in the form of K2r®'"? as found
from equation (47), against the dimensionless
wave number «® for Prandtl numbers of 0-1, 0-72
and 10-0, respectively. One obvious effect of
increasing Prandtl number is to extend the
curves out to higher wave numbers. This is to be
expected since for higher Prandtl number the
thermal conductivity is less and hence there is
less tendency for the small thermal eddies to be
smeared out.

That changing Prandtl number does not
greatly change the shape of the K® curves is
shown in Fig. 6, where the ordinates of Fig. 5
have been normalized by division by the absolute
value of [K@t@n/zlmm and the abscissas nor-
malized by division by the value of «® yielding
zero ordinate. Thus it would appear that the
basic nature of the convective transfer is unalter-
ed by a change in the Prandtl number.

In Figs. 7(a), (b) and (c) curves are presented
for the dimensionless spectral function G2, as
obtained from equation (48). With increasing
time the curves approach the final period curve,
shown as a dotted line. Physically the G® curves
represent the distribution of the total thermal
“energy” T? among thermal ‘“‘eddies” of size
~ 1/x®,

Since, as a first approximation theory, the
theory presented here is restricted to not-too-
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large convection/conduction ratios and since
(for a given Reynolds number) increasing
Prandtl number signifies an increasing value of
this ratio, it might be expected that the theory
would apply less well for higher values of Prandtl
number. Figs. 7(a), (b) and (c) indicate that this
is apparently the case: the curves for Pr == 0-1
are quite smooth, those for Pr = 0-72 and small
values of @ are a little less smooth and for
Pr = 10 the spectral curves begin to go negative
at the smaller values of ¢9.

The reason that the final period curve is
approached from below for large «® in Fig. 7(c)
is that at such high values of Prandtl number the
transfer term supplies thermal “‘energy” to the
high «® range faster than it can be dissipated—
hence [6G®/or®]., is positive instead of
negative as with the lower Prandtl numbers.

If equation (33) is integrated with respect to «
from 0 to oo and use is made of equations (35)
and (42), the resulting equation is

Tz y [
_ﬁ(m)—ij G dx

e Prj,

This equation points out the interesting fact that
for a given viscosity and temperature fluctuation
spectrum the decay rate is inversely propor-
tional to the Prandtl number. The results of this
analysis, however, are not comparable on this
basis since the manner in which the initial con-
ditions were imposed (equation (31)) precludes
comparing two different Prandtl number fluids
with the same spectral curve. However, the
results of this analysis do show that the decay
rate decreases relative to the final period rate
with increasing Prandtl number, as can be seen
from Figs. 8(a), (b), and (¢}, where equation (49)
has been plotted for values of Prandtl number of
0-1, 0-72 and 10. The rates of decay for Pr = (-1
and 0-72 are greater than that predicted by the
final period law (dotted line) while that for
Pr =10 is less than the final period rate. The
Prandtl number function R of equation (49)
changes from positive to negative at Pr = 47717
for which R = 0 and the decay rate is exactly
that for the final period. Although the decay
rate for Pr = 4-7717 is described by the final
period equation, the spectral curves are not of
the final period shape (except for the final
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FiG. 8. Dimensionless square of temperature fluctua-

tion as a function of time. Equation (49).

— — — — Final period. (a) Pr = 0-1. (b) Pr = 0-72,
(©) Pr = 10.

period). It just happens that each of the spectral
curves for this value of Prandtl number lies
partly above and partly below the final period

curve in such a way that the integral for 7%/2
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indicated by equation (42) is equal to the final
period value.

Corrsin {1] has previously pointed out that
for the final period, as well as for self-preserving
and inertial spectrums at very large Reynolds
and Peclet numbers, temperature fluctuations die
out more slowly than velocity fluctuations. This
analysis indicates that the same is true for times
before the final period, as can be seen by com-
parison of equation (43) for TZwith the analogous

equation for % (equation (38) of [3]).

CONCLUSIONS

The principal conclusions to be drawn from
the present work appear to be the following:

(1) It was possible to represent the available
experimental temperature fluctuation decay data
by means of the present theory.

(2) For times before as well as during the final
period, the temperature fluctuations decay more
slowly than do the velocity fluctuations.

and R. G. DEISSLER

(3) The general effect of increasing Prandtl
number is to extend the spectral function to
larger wave numbers and to reduce the rate of
decay of the temperature fluctuations.
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