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Abstract-A previous analysis of homogeneous turbulence for times before the final period has been 
extended to the case of temperature fluctuations in a homogeneous turbulence. The method consists 
essentially of the solution of the 2- and 3-point Fourier-transformed temperature equations after 
neglecting the fourth-order correlations in comparison with the second- and third-order correlations. 
Results are obtained for the convective transfer function, the spectral “energy” function and the total 
temperature fluctuation “energy”. Comparison is made between the analysis and published experi- 
mental data obtained using air. The decay law obtained may be written F = A(t - t,,)-3/2 + B(t -t0)-5 
whereF is the total “energy” (the mean square of the temperature fluctuations), 1 is the time and A and 
t, are constants determined by the initial conditions. The constant B depends on both initial conditions 
and the fluid Prandtl number. For large times the last term becomes negligible, leaving the -3/2 power 
decay law for the final period previously found by Corrsin. 

It is shown that the effect of increasing Prandtl number is to extend the spectral “energy” function 
to larger wave numbers and to reduce the rate of decay of the temperature fluctuations. 

R&urn&-Une etude precedente de la turbulence homogene, a des instants precedant la periode finale, a 
et6 etendue au cas des fluctuations de temperature en turbulence homogene. La methode consiste 
essentiellement a resoudre les equations aux transformees de Fourier des temperatures en deux et 
trois points, apres avoir ntglige les correlations du 4” ordre vis a vis des correlations du 2” et 3” ordre. 
Des resultats sont obtenus pour les fonctions de la transmission de chaleur, du spectre d”energie” et 
1”energie” de fluctuation de la temperature totale. Une comparaison est effectuee entre la presente 
etude et les resultats experimentaux publies pour I’air. La loi de degradation obtenue peut s’ecrire 
F = A(t - t0)-3/Z $- B(t - t,)-5 ou F est I“tnergie” totale (moyenne quadratique des fluctuations 
de temperature), t le temps A et t, sont des constantes dtterminees par les conditions initiales. La 
constante B depend a la fois des conditions initialeset du nombre de Prandtl. Pour de grandes periodes, 
le dernier terme devient negligeable, seule subsiste la loi de degradation en puissance ~ 3/2 pour la 
periode finale precedemment trouvte par Corrsin. 

On montre que l’effet de l’augmentation du nombre de Prandtl est d’etendre la fonction du spectre 
d“energie” a des nombres d’ondes plus grands et de reduire la vitesse de degradation des fluctuations 

de temperature. 

Zusammenfassung-Eine friihere Untersuchung der homogenen Turbulenz fiir Zeiten vor der End- 
periode wurde auf den Fall von Temperaturschwankungen in homogener Turbulenz ausgedehnt. Die 
Methode besteht im wesentlichen in der Losung der Fourier-transformierten Temperaturgleichungen 
fur zwei und drei Punkte, unter Vemachllssigung der Korrelationen vierter Ordnung gegen die der 
zweiten und dritten Ordnung. Man erhalt Ergebnisse fur die konvektive Ubergangsfunktion, die 
spektrale “Energie”-Funktion und die totale “Energie” der Temperaturschwankungen. Mit Literatur- 
werten ftir Luft wird ein Vergleich durchgefiihrt. Das Abklinggesetz kann in der Form 

F = ,qr _ f&3/2 _!. g(, - Q-5 

geschrieben werden. Hierin bedeuten F die totale “Energie” (das mittlere Quadrat der Temperatur- 
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schwankungen), t die Zeit, A und to Konstanten, die aus den Anfangsbedingungen zu bestimmen sind. 
Die Konstante B hangt sowohl von den Anfangsbedingungen wie von der Prandtlzahl ab. Da fiir grosse 
Zeiten der zweite Term zu vemachlassigen ist, bleibt fiir die Endperiode das Abklinggesetz mit der 
Potenz-312, wie es friiher von Corrsin gefunden wurde. 

Es zeigt sich femer, dass bei wachsender Prandtlzahl die spektrale “Energie’‘-Funktion zu gros- 
seren Wellenzahlen ausgedehnt und das Abklingen der Temperaturschwankungen vermindert wird. 

AHHOTaq~sI-CylrleCTBy~~~~ aHam Typ6yxeHTHOCTM 6b1n paCIIpOCTpaHeH Ha GIylIati 

TeMnepaTypHbIX Kone6aHaB B CpeAe C OAHOpOAHOii Typ6yJleHTHOCTbIO. MeTon COCTOHT B 

peIUeHHl4 ~H@@epeHIWaJIbHbIX ypaBHeHHti nepeHOCa TeIIJIa C IIOMOUbIO HRyX-II TptiXMepHbIX 

npeo6panoeaunti @ypbe 6e3 yyera cooruomeuun npeo6pa30Bauuti uerseproro, B~0p0r0 m 

TpeTberO IIOpFIAKOB. nOJIyseHbI pe3yJIbTaTbI AJIFI (PyHKL@i KOHBeKTHBHOI'O nepeHOCa PI 

cnenrpanbuoti 43Heprmi)~, a TaKWe 06IIfeti WHepIWW TeMnepaTypHbIX HOJIe6aHd. CpaBHH- 

BaeTCR aHaJll43 II Ony6JIHKOBaHHbIe 3KCIIepPiMeHTaZIbHbIe xaHHble,IIOJlyqeHHbIe &WI Bo3ayxa. 

3aKoK peaaKcaqm MoltEeT GblTb 3anmaH IcaK 

T;=A (t-t,)-3~z+B(t-t0)-5 

l?JeF- 06llW (GHepIWI)) (CpeAHee KBaApaTWIHOeTeMIIepaTypHbIXKOJIe6aHHfi),t-BpeMFi, 

L'I H t, - nOCTOHHHbIe, OIIpeAeZIReMbIe Ha'IaJIbHbIMLI yCJlOBI4fIMEI. nOCTOfIHHaR B 3aBIICIIT 

OT HavaJIbHbIX yC.?OBd II OT KpHTeplWI npaHATJIlr AJIR H(IIAKOCTH (ra3a). ,@IR 6onblunX 

IIpOMe?SyTKOB BpeMeHM IIOCJIeAHIOIO BeJlIFII3Hy He yWlTbIBaeM, OCTaBJIRH 3aKOH penaKcaqm 

B BHAeOAHOWleHaCO CTeneHbIO- 3/2 AJIn KOHeYHOrO nepMO~a,OTKpbITOrO paHee HOppCMHbIM. 

noKa3aH0, YTo yse.nmeIme KpllTepm npaHATJIR IIpMBOAPIT K pacnpocTpaHeHm0 

CneKTpaZbHOti $lyHKUPIM t@HepIWHD Ha 6oxbIme BOJIHOBbIe KpHTepHII II K yMeHbIIIeHIII0 

CKOpOCTH 3aTyXaHHR TeMIIepaTypHbIX Koxe6airufi. 

INTRODUCTION order correlation terms compared to lower-order 
A THOROUGH study of the decay of temperature 
fluctuations in homogeneous turbulence would 
appear to be one of the initial steps required for 
understanding the important process of heat 
transfer in shear turbulence. As pointed out in 
[l], such a study would also be applicable to 
concentration fluctuations during the mixing of 
equi-dense fluids, for the cases of constant 
mutual diffusion coefficient and no interfacial 
tension. 

Corrsin [ 1, 21 has already made an analytical 
attack on the problem of turbulent temperature 
fluctuations using the approaches employed in 
the statistical theory of turbulence. His results 
pertain to the final period of decay, and, for the 
case of appreciable convective effects, to the 
“energy” spectral form in specific wave-number 
ranges. Further work along this same line has 
more recently been done Ogura [7]. 

In 1958 Deissler [3] presented a theory of 
homogeneous turbulence which was valid for 
times before the final period. Essentially, the 
theory presented in [3] is valid during the period 
for which the fourth- and higher-order velocity 
correlation terms are negligible compared to the 
second- and third-order correlation terms. In 
[4] the analysis was extended to still earlier 
times by neglecting only the fifth- and higher- 

correlation terms. 
In solving the problem of the decay of tem- 

perature fluctuations in homogeneous turbulence 
before the final period it seems logical to use 
the approach which has already been employed 
with success for studying turbulence. In this 
paper, therefore, the method of [3] is used to 
study decay of temperature fluctuations in 
homogeneous turbulence. The results of the 
analysis are compared to the experimental data 
of [6]. 

C(K), 

G 
F(q), 
G, 
H@, 

K 
k, 
M, 
N,, 

Pr, 
p, 

NOTATION 

function of K defined by equation 
(38); 
heat capacity at constant pressure; 
function defined by equation (40); 
spectral “energy” function; 
dimensionless quantity defined by 
equation (52); 
spectral transfer function; 
thermal conductivity; 
mesh size ; 
constant depending on initial con- 
ditions; 
Prandtl number ; 
static pressure ; 
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R, 

T, 

T. 
F. 

t. 
u. 

u. 

27, 
u. 
s. 

X, 
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dimensionless function of Pr, given 
by equation (44). 
Reynolds number, MU/v; 
displacement vector from P to P’; 
displacement vector from P to P" ; 
dimensionless quantity defined by 
equation (53); 
temperature fluctuation from time 
average ; 
time average value of temperature; 
instantaneous value of tempera- 
ture ; 
time ; 
time average velocity of fluid in 
direction perpendicular to grid; 
velocity fluctuation from time 
average ; 
time average value of velocity; 
instantaneous value of velocity; 
distance in flow direction from 
heated grid ; 
position vector; 

Greek symbols 
Y9 thermal diffusivity; 
8 03 constant depending on initial con- 

ditions ; 
5. angle between H and IX’; 
7. variable defined by equation (41); 
H. x’, wave-number vectors (magnitude 

in dimensions of l/length); 
XT. thermal microscale ; 
v, kinematic viscosity; 
P, fluid density; 
7, 4, jI, a, 0, symbols used in quantities obtained 

by Fourier transforms. 

Subscripts 
i, j, k, 1, symbol used to indicate direction; 
0, indicates initial conditions; 
min, minimum value; 
norm, normalized quantity. 

Superscripts 
, 
,: 

indicates quantities at point P’; 

@’ 
indicates quantities at point P”; 

3 indicates dimensionless quantities. 

THEORY 

A. Correlation and spectral equations 
For an incompressible fluid with constant 

properties and for negligible frictional heating. 
the energy equation may be written 

where F and I& are instantaneous values of 
temperature and velocity. Breaking these instan- 
taneous values into time average and fluctuating 
components as F = in + T and ~7~ 7-y fi, A- zli 
allows equation (1) to be written 

where y z k/PC,. From the condition of 
homogeneity it follows that aT/lax, _- 0, and in 
addition the usual assumption is made that 7; is 
independent of time and that Ci -: 0. Thus 
equation (2) simplifies to 

where Pr = v/y. 
Equation (3) is assumed to hold at the arbi- 

trary point P. For point P’ the corresponding 
equation can be written 

(4) 

Multiplying equation (3) by T’, equation (4) by 
T, time averaging and adding the two equations 
gives 

BTT’ 
r+U 

B(TT’) , a(TT’j 
F+Ui’= 

z t3Xi 

” P(W) + ayFj 
F ax,ax, [ ax;axl I (5) 

The continuity equation is 

au< au: _-- 
axi ax; =o (6) 
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Substitution of equation (6) into (5) yields 

i?(P) a(m) + a(m) 
--&----t---- axi r= 

v aym) + agT> 
2% XiaXi [ 

___ -zqq I (7) 

By use of a new independent variable, 

ri c xi - xi, 

it is possible to rewrite equation (7) in the form 

a(F) a&i) a(~) 2V a%(P) 
--I___ 

at 2ri +-aij=- 
(*) 

Pr ar,&, 

It is convenient to write this equation in 
spectral form by use of the following three- 
dimensional Fourier transforms 

s 

Cc 
F(r) = 77(x) exp (ix * r) dH (9) 

--‘L 

uY(r) = 
s 

m $7(x) exp (ix - r) dH (10) 
-0j 

and, since it is obvious by interchanging P and 

P’ that m(r) = m(-r), 

up(r) = 
s 

m $7(-x) exp (ix + r) dx (I 1) 
--m 

Substitution of equations (9)-(11) into equation 
(8) leads to the spectral equation 

27(H) 
-g-- -+ iKi 

[ 
di77’(-x) - &7&) = 1 

2v 
- - fcG(X) 

Pr (12) 

Equation (12) is analogous to the two-point 
spectral equation governing the decay of velocity 
fluctuations (as pointed out in [I]) and therefore 
the quantity 77’(x) may be interpreted as a 
temperature fluctuation “energy” contribution 
of thermal eddies of size l/~. Equation (12) 
expresses the time derivative of this “energy” as 
a function of the convective transfer to other 
wave numbers and the “dissipation” due to 
the action of thermal conductivity. The second 
term on the left-hand side of equation (12) is 
the so-called transfer term while the term on the 
right-hand side is the “dissipation” term. 

In order to obtain an additional relation 
involving the unknown quantities the same 
general procedure is followed as in [3] and a 
three-point equation is derived. For this purpose 
the three points P, P’ and P” together with the 
indicated position vectors r and r’ are considered. 

.:-:c l P” 

i 

P 
1’ 

P’ 

For the two points P’ and P” arelation analogous 
to equation (7) can be found as 

(&y”) + a(u;T’T”) + qu;‘T’T”) 

at ax:: 
_-= 

ax; 

If equation (13) is multiplied through by I+, the 
jth velocity fluctuation component at point P, 
the resulting equation can be written in the form 

a@,,‘,,‘) 
at + 

a(+?.&; ,‘,“) a(u,ugmy -- 
8X; -+ aX; 

z 

The momentum equation at point P is 

a2ij ao4ud 1 aP t+~“-..--+Y~~ (15) 
z P ax, E z 

If equation (15) is solved for ~~~~a~ and substi- 
tuted into equation (14), the result on taking 
time averages is 

a(~)+a(U3UITIT")+a(UjU;IT"TI)= 1 
at axi ax; i 

v az(uj,',") 

-1 Pr ax;ax; 
a(ujuiT’T”) 1 @pT’T”) - -- 

ax, P axi + 

I (16) 
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Making use of the relations ri = xi - xi and 
r; = x’i - 3ci allows equation (16) to be 
rewritten as 

a( U&T’T”) a(u,u;‘T”T’) z __ ..__. _~ ..-.. - 
0ri ar; + 

S(uju,T’T”) i?(UjUJT”) 
+ -- S;*,,?q~--- + -T& + 

a L 

1 @pT’T”) 1 rY(pT’T”) +----__ .+ p__~~ 
P &j 

I 

I 

i (17) 

I 

Six-dimensional Fourier transforms for quanti- 
ties in this equation may be defined as 

p== 

x, m 

s s 
m exp [i(~ - r + H’ - r’)] dH dx’ (18) 

-lj --oc; 

uju;TJ,” = n m 
S J _-m _vexp [i(x*r+ d-r’)] dxdx’ (19) 

pT’T”_ 

CC ‘J) 

r r a8’8” exp [i(~ - r + H’ * r’)] dH dK’ (20) 
J-z:J -x 

interchanging P’ and PI’ shows that 

r.&YT = u~u;,‘,“. 

By use of this fact and equations 
equation (17) may be transformed to 

gjqzq 
-or-- + ;r ((1 + pr)K2 + 2Pr KiK: + 

+ i(Ki _t Ki)m f j i(Kj -+- ~i)m (21) 

If the derivative with respect to x1 is taken of 
the momentum equation for point P, the equa- 
tion multiplied through by T’T” and time 
averages taken, the resulting equation is 

or, in terms of the displacement vectors r and r’ 
this becomes 

+ 2 ;;::-;, -+- & (pT’T”) (23) 
'2 1 11 1 

Taking the Fourier transform of equation (23) 
and solving the transformed equation for ,m 
yields 

(24) 

Equation (24) can be used to eliminate aSrSrr 
from equation (21). 

B. Solution for times before the jinal period 
To obtain the equation for final period decay 

the third-order fluctuation terms are neglected 
compared to the second-order terms. Analo- 
gously, it would be anticipated that for times 
before but sufficiently near to the final period 
the fourth-order fluctuation terms should be 
negligible in comparison with the third-order 
terms. If this assumption is made then equation 
(24) shows that the term m, associated with 
the pressure fluctuations, should also be neg- 
lected. Thus equation (21) simplifies to 

a~~ ---gj- + i; {(l + Pr)K2 + 2Pr ’ ’ K~Kd T 

(25) 

Inner multiplication of equation (25) by Kj and 
integration between t, and t gives 

KjF&7TF = K> 3 [ .@Y0”],exp ( - k [(l + Pr) I? 5 

+ 2Prm’ cos 5 + (1 + Pr)L2] (t - t,,) (26) 

Letting r’ =- 0 in equation (18) and comparing 
the result with equation (10) shows that 

s 

m 
KP(K) = K~,BP~ dx’ (27) 

--m 
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Substitution of equations (26) and (27) into 
equation (12) results in 

; T(X) + ;r X2771(W) = 

J OD i [JC&F~F - ~,/3~O’(-x)el’(-x’)]~ -co 
exp 

i 

v(t - to) 
- ~ 

Pr [ 
(l + PU)K2 + 

f 2PrKK’ COS 5 + (1 

Now dx’( = d/c;dK;dK;) 
terms of K’ and < as 

+ Pr)K’2 
Ii 

dx‘ (28) 

can be expressed in 

dx’ = -2.rrK12 d(cos f;)dK’ (29) or, on carrying out the integration, 

the resulting equation is 

where 

- exp z’$rA 

’ I 

[( 1 + Pr)d + 2PrKK’ + ( 

+ (1 + h+c’2] 

K _ - 1/(n) W+)5/2 exp [-~(t - to) (1 + 2Pr)K21Pr(l + Pr)] .____ 
2v312 (t - t,)3/2 (1 + Pr)612 

1 

15Pr lr4 

[ 

5Pr2 

+ 

3 f@ 

4v2 ft - tJ2 (1 + Pr) (lfj - 2 1 v(t - to) + [ Pr3 Pr 
(1 + Pr)” - (1 + Pr) 

I > 
KS (34) 

Substitution of equation (29) in equation (28) 
yields 

;l 77(X) + gr K’T(X) = 

f 
*27rlki [lgiere” - j$tY( - $+Y(_ X’)]ox’2 
0 

1 

[s { exp 
-1 

-‘(bF “) [(1 $ &)K2 $ 2prKK’ 

-l -I 

cosC+(l +Pr)K’z],/d(costJ] dK’ (30) 

In order to perform the indicated integrations in 
equations (30) the initial condition, 

iKi [w - piel(-K)BI’ (-X’)]o, 

must be specified. A function which would 
appear to satisfy all the necessary conditions, as 
will be seen later, is 

iKi [p - &s’ (--SC)@ (- H’)lo = 

- & (K2K’4 - K4K’2) (31) 

where 6, is a constant depending on the initial 
conditions. Substitution of equation (31) into 
(30), carrying out the two integrations and 
defining 

G(K) = %TK~~~‘(x) (32) 
X 

(It may be of interest to note that the spectral 
energy function defined in [1] is larger than that 
defined in equation (32) by a factor of 4.) Since 
for low K values, as shown in [1], a Taylor’s 
series expansion for G begins with the product 
of a time independent constant and K~, equation 
(33) indicates that Kmust begin as K4 for small K. 

This condition of K is fulfilled by equation (34). 
It can be shown, using equation (34) that 

f 
kdK =0 (35) 
0 

This was to be expected physically since K is a 
measure of the transfer of “energy” and the 
total “energy” transferred to all wave numbers 
must be zero. The necessity for equation (35) to 
hold can be shown rigorously as follows: if 
equation (10) is written for both x and -K, and 
the resulting equations differentiated with respect 
to ri and added, the result is, for 
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Since according to equations (32), (33) and (12) 

K G 2TriK2Ki [y&7 (-x) - di77’ (x)] 

the previous equation can be written 

Inasmuch as dx = 4nK2dK for K = K(K, f), the 
last equation becomes 

s cc 

0 

KdK=-;.u,TT=O 
% 

by homogeneity, Q.E.D. 
Since equation (33) is a linear differential 

equation it can be solved for G as 

+ G(K) exP 
- 2”K;( - fo)] (36) 

where C(K) is an arbitrary function of K. For 
large times, Corrsin [I] has shown the correct 
form of the expression for G to be 

G = z K2 exp 
-2VK2 (t - to) 
-pPFp 1 (37) 

where N0 is a constant, analogous to the 
Loitsianskii invariant, which depends on the 
initial conditions. Using equation (37) to evalu- 
ate C(K) in equation (36) yields 

qK) = $! 
Substitution of the values of K and C(K) as 
given by equations (34) and (38) into equation 
(36) gives the equation 

where 

s 

? 
F(T) = exp (-72) exp (S2) dS (40) 

0 

77 = K J[j&$] (41) 

The function F(T) has been calculated numeri- 
cally and tabulated in [5]. If in equation (9) r is 
set equal to zero and use is made of the definition 
of G as given by equation (32) the result is 

F 
~-- = jmG(tc)dr 
2 0 

(42) 

Substituting equation (39) into (42) gives 

s”i .- = 
2 8d/(2~)&~ (t - to)3!2 

where R is a function of Prandtl number, 

7r(Pr)6 
R = ___~-. _~_. 

2(1 + Pr) (1 + 2Pr)5i2 

5Pr(7Pr - 6) 

16(1 + 2Pr) 

35Pr(3Pr2 - 2Pr + 3) 

8(1 + 2Pr)2 + i (44) i 

~ 1*5422Pr(3Pr2 - 2Pr + 3)(1 + 2Pr)512 
-~~ _~ ~- 

Z/(T) (1 + Pr)1112 

Cc (II)... 

[ c- 
It 

[II + 2(n - l)] / 

(2~ + 1)n!(2)fG(1 + Pr)n II I n=1 I 
The second term on the right-hand side of 
equation (43) becomes negligible at large times 
leaving the final period decay law previously 
found by Corrsin [ I]. 

No 
G(K, t) = ; ~2 exp 

-2VK2 (t - to) 
- 

Pr 1 + 
5’2 eXp [- VK(t - tO)(l + 2Pr)/Pr (1 + Pr)] 

2v3j2 (1 + Pr)‘j2 

3Pr K4 Pr(7Pr - 6)~~ 4(3Pr2 - 2Pr + 3)~~ 
i (39) 

2vyt - toy’2 + 3v(l + Pr) (t - to)3/2- 
_-. + 

3(1 + Pr)” (t - to)‘12 

+ 82/(v) (3Pr2 - 2Pr + 3)Kg F(q) 

3(1 + Pr)s12 2/(Pr) 
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If use is made of the relation t = XJU where R is the distance from the heated grid and U the 
mean fluid velocity, equation (43) can be put in the alternative form 

(45) 

where M is the grid mesh size. 
It is convenient to have the equations in dimensionless form. For this purpose the following 

dimensionless quantities are defined : 

K@ = y/[l’(t - to)]K p = 
S,4/’ K 

yll/? NOll/i 
p =I 

iVo2” vQ”(t-5) G% = v(t - t&G 
sO2;7 

NO 

By making use of relations (46) equations (34) (39) and (43) can be written in dimensionless 
form as 

KB = -d(n)tPd7’2 exp [-Ka2 (1 -t 2pr)/h(l $ pr)] -..- 
2( 1 + Pr)5’2 w2 

15K&‘” 5P$ -_.___ 
4(l + Pr) + 

3 __-.- - - 
@* (1 $ Pr)” 2Pr I I K (47) 

and 

G@ zzx 
K@’ eXp (-2K&‘/iPr) ___ + dt4Pr7’2 exp [- K”?’ (1 + 2Pr)/Pr(l + Pr)] - 

?r 2(1 + Pry f@‘j2 

and 
i”;ig! PF 
---Z 

2 +R 
8y/(2r) t+’ ta5 

(49) 

Another quantity of interest is the thermal microscale hTt which, for the isotropic case, can 
be defined by the equation 

d? - 12rF -- =- 
dt G 

(50) 

Combination of equations (45) and (50) yields 

3( - _To/M)S’2 24R(Pr)&,f (-Zo/M)b 

AT 2 

(-1 - 

2/(2~) ReMPr[(Z/M) - (Zo/M)3/2] ’ (7br)5’2 ReM [(T/M) - (fo/M)]” 

M 3( - ~o/~)3’2 10R6; (-JQM)~ (51) 

8l/(2~) [(Z/M) -I (_T~/M)]~/~ ’ prsf2 [(Z/M) - (fo/M)]6 
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where ReM is defined as MU/v. For large times 
of decay the second terms in both numerator 
and denominator become negligibly small and 
the final period expression for (~~/~)~ previously 
derived by Corrsin [2] is obtained. 

DISCUSSION AND RESULTS 

The experimental data of [6] were obtained 
behind a heated grid in a wind tunnel using air 
as fluid. Both temperature and velocity fluctua- 
tions were measured with hot wire anemometers. 
Fig, 1 shows the temperature fluctuation data 
plotted as [l/F]2/3 against R/M. The solid line 
represents the theory as given by equation (49, 
with the constants ,QM, A’,, and S, evaluated as 
shown, The dotted straight line is the final 
period curve, as indicated by the first term on the 
right-hand side of equation (45). The data 
scatter considerably-it would appear that with 
present measuring techniques there is less 
precision in temperature fluctuation measure- 
ments than in velocity fluctuation measurements. 
One of the main reasons for this is that the tem- 
perature fluctuations must be kept small to 
avoid fluid property variations. Comparison of 
the solid curve with the data indicates that the 
theory is valid for all n/M greater than about 25. 
None of the data is in the fina period. 
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FIG. 1. Theoretical decay of temperature fluctuations 
compared with experimental data for Pr = 0.72. 
- Theory, equation (45). 

;i;,lM = - 82.6; N, = 506 x lo-‘; 
6, = 5.34 x 10-26. 

- - Theoretical final period. 
0 Data of [6]. 

The effect of the convective terms can be seen 
in Fig. 2, where the transfer function K@ is 
plotted against K@ for various dimensionless 
times t@! for a Prandtl number of 0.72. Since K@ 
is proportional to the net transfer of thermal 
“energy” into an eddy size, Fig. 2 shows that 
there is an overall transfer of “energy” from large 
eddies to small eddies. The integrated transfer 
term j$ K@dK@, must, however, be zero. The 
curves indicate that, as expected, the transfer 
term dies out with increasing time. The results 
are quite analogous to those found by Deissler 
[3] for the velocity transfer function. 

-w- 

FIG. 2. Dimensionless transfer function KG as a 
fnnction of wave number and time for Pr = 0.72. 

If a quantity H is defined as the integrand in 
equation (33a) multiplied by the coefficient 
before the integral, then a dimensionless 
quantity H@ can be defined by the equation 

H&’ z 
vyt - t(t)5 

0 

(exp [-i( 
H=_~~~(~)“_(~i”] 

2 

(1 + Pr) - 2Pr; + 

i_(l +Prli~)“)] -_exP [-~~((l+P~)+ 

+ 2Pr : + (1 + Pr) 
’ 2 

i HI:, 
z (52) 

He is proportional to the amount of thermal 
“energy” transferred to a wave number K from 
the wave number K’. In Fig. 3 H@ is plotted 
against d/K for three different values of K@ and 
for Pr = O-72. The three values of K@ chosen 
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were such that K@ was a minimum, zero and a 
maximum. As an example of the physical signifi- 
cance of the curves, the curve for K’ = 0.814 
represents a minimum for K@, so that there is an 
overall loss by convective transfer. The curve 
demonstrates this overall loss, since it can be 
seen that more energy is lost by wave number K 

to wave numbers greater than K than is gained 
from wave numbers less than K. 
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FIG. 3. Variation of dimensionless transfer quantity 
He with ICI/K for three values of K@ and Pr = 0.12. 

Fig. 4 is somewhat similar to Fig. 3 except that 
the effect of K on the curves has been averaged 
out by performing an integral of H@ from 
0 to 03, obtaining S@, or 

S@ may be interpreted as being proportional to 
H@ for an average value of K. Thus, on the 
average, there is a maximum transfer of “energy” 
to K from a wave number K’ equal to about 0*65~, 

while the maximum loss from K is to a wave 
number K’ equal to about 14K. 

The quantities H@ and Se are analogous to 
quantities defined by Deissler [3] in connexion 
with the velocity inertial transfer, and the trends 
found here are quite similar to those. 

FIG. 4. Variation of averaged transfer quantity S@ 
with K’/K for Pr = 0.72. 

In Figs. 5(a), (b) and (c) the transfer function 
is plotted in the form of K@t@1”2, as found 
from equation (47), against the dimensionless 
wave number K’ for Prandtl numbers of 0*1,0*72 
and 10.0, respectively. One obvious effect of 
increasing Prandtl number is to extend the 
curves out to higher wave numbers. This is to be 
expected since for higher Prandtl number the 
thermal conductivity is less and hence there is 
less tendency for the small thermal eddies to be 
smeared out. 

That changing Prandtl number does not 
greatly change the shape of the K@ curves is 
shown in Fig. 6, where the ordinates of Fig. 5 
have been normalized by division by the absolute 
value of [K@t@11’2 lrnin and the abscissas nor- 
malized by division by the value of K’ yielding 
zero ordinate. Thus it would appear that the 
basic nature of the convective transfer is unalter- 
ed by a change in the Prandtl number. 

In Figs. 7(a), (b) and (c) curves are presented 
for the dimensionless spectral function G@, as 
obtained from equation (48). With increasing 
time the curves approach the final period curve, 
shown as a dotted line. Physically the G@ curves 
represent the distribution of the total thermal 
“energy” ?? among thermal “eddies” of size 
N l/K’. 

Since, as a first approximation theory, the 
theory presented here is restricted to not-too- 
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FIG. 5. Variation of K@t@11’2 with wave number. 
(a) Pr = 0.1. (b) Pr = 0.72. (c) Pr = 10. 

FIG. 6. Same results as in Fig. 5, but with ordinate 
and abscissa normalized. 

007 r 

FIG. 7. Dimensionless spectral energy function GBe 
as a function of wave number and time. (a) Pr = 0.1, 

(b) Pr = 0.72. (c) Pr = 10. 
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large convection~conduction ratios and since 
(for a given Reynolds number) increasing 
Prandtl number signifies an increasing value of 
this ratio, it might be expected that the theory 
would apply less well for higher values of Prandtl 
number. Figs. 7(a), (b) and (c) indicate that this 
is apparently the case: the curves for Pr = O-1 
are quite smooth, those for Pr = 0.72 and small 
values of t@ are a little less smooth and for 
Pr = 10 the spectral curves begin to go negative 
at the smaller values of t@. 

The reason that the final period curve is 
approached from below for large K* in Fig. 7(c) 
is that at such high values of Prandtl number the 
transfer term supplies thermal “energy” to the 
high K@ range faster than it can be dissipated- 
hence [aG@/W],, is positive instead of 
negative as with the lower Prandtl numbers. 

If equation (33) is integrated with respect to K 
from 0 to co and use is made of equations (35) 
and (42) the resulting equation is 

wi2) 21J 
--___ 

* K2G dK 

at =pu, f 
This equation points out the interesting fact that 
for a given viscosity and temperature fluctuation 
spectrum the decay rate is inversely propor- 
tional to the Prandtl number. The results of this 
analysis, however, are not comparable on this 
basis since the manner in which the initial con- 
ditions were imposed (equation (31)) precludes 
comparing two different Prandtl number fluids 
with the same spectral curve. However, the 
results of this analysis do show that the decay 
rate decreases relative to the final period rate 
with increasing Prandtl number, as can be seen 
from Figs. S(a), (b), and (c), where equation (49) 
has been plotted for values of Prandtl number of 
0+1,0+72 and 10. The rates of decay for Pr = O-1 
and 0.72 are greater than that predicted by the 
final period law (dotted line) while that for 
Pr = 10 is less than the final period rate. The 
Prandtl number function R of equation (49) 
changes from positive to negative at Pr = 4.7717 
for which R = 0 and the decay rate is exactly 
that for the final period. Although the decay 
rate for Pr = 4.7717 is described by the final 
period equation, the spectral curves are not of 
the final period shape {except for the final 
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FIG. 8. Dimensionless square of temperature fluctua- 
tion as a function of time. ’ Equation (49). 
----Final period. (a) Pr = 0.1. (b) Pr = 0.72. 

(c) Pr = 10. 

period). It just happens that each of the spectral 
curves for this value of Prandtl number lies 
partly above and partly below the final period 
curve in such a way that the integral for p/2 
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indicated by equation (42) is equal to the final 
period value. 

Corrsin [l] has previously pointed out that 
for the final period, as well as for self-preserving 
and inertial spectrums at very large Reynofds 
and Peclet numbers, temperature fluctuations die 
out more slowly than velocity fluctuations. This 
analysis indicates that the same is true for times 
before the final period, as can be seen by com- 
parison of equation (43) for Fwith the analogous 
equation for 2 (equation (38) of [3]). 

CONCLUSIONS 

The principal conclusions to be drawn from 
the present work appear to be the following: 

(I) It was possible to represent the available 
experimental temperature fluctuation decay data 
by means of the present theory. 

(2) For times before as well as during the final 
period, the temperature fluctuations decay more 
slowly than do the velocity fluctuations. 

(3) The general effect of increasing Prandtl 
number is to extend the spectral function to 
larger wave numbers and to reduce the rate of 
decay of the temperature fluctuations. 
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